## NOTES

## STRUCTURE OF ANTIBIOTIC Bu-2545, A NEW MEMBER OF THE CELESTICETIN-LINCOMYCIN CLASS

SOICHIRO TODA, SUSUMU NAKAGAWA, TAKAYUKI NAITO and HIROSHI KAWAGUCHI

Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan (Received for publication February 9, 1981)

Bu-2545 is a new antibiotic that has activity against various anaerobic organisms as well as aerobic Gram-positive bacteria. It was produced by a *Streptomyces* strain similar to *S. aureocirculatus*. The fermentation, isolation and properties of Bu-2545 were reported in a preceding paper<sup>1</sup>). The structure of Bu-2545 had been proposed<sup>1</sup>) on the basis of microanalysis, NMR and mass spectral data in comparison with lincomycin and celesticetin. The present paper describes the structure elucidation of Bu-2545, including its stereochemistry, by <sup>13</sup>C-NMR and degradation studies.

The <sup>13</sup>C-NMR spectrum of Bu-2545 (1) (Table 1) showed the presence of sixteen carbons including C-CH<sub>3</sub> ( $\delta$  in ppm: 14.0), SCH<sub>3</sub> (14.0), NCH<sub>3</sub> (41.4) and OCH<sub>3</sub> (56.9). The carbon chemical shifts due to SCH<sub>3</sub> and C-1~C-5 of the sugar portion were in agreement with those of lincomycin (2) under protonated conditions. However, the signals due to C-6~C-8 and the N-acyl residue consisting of six carbons were different from those of **2**. The C-7 signal of **1** at  $\delta$  76.8 was shifted downfield by 9.4 ppm as compared with that of **2**, while the C-6 and C-8 signals were shifted upfield by 5.0 and 3.2 ppm, respectively. These three carbons along with the N-

|                             | Chemical shift, ppm from TMS |                      |       |                      |      |                      |              |                      |
|-----------------------------|------------------------------|----------------------|-------|----------------------|------|----------------------|--------------|----------------------|
|                             | Carbon                       | Bu-2545 (1)ª         |       | 5ª                   |      | Lincomycin           | Celesticetin | Methyl thio-         |
|                             |                              | Base                 | +DCl  | Base                 | +DCl | HCl (2) <sup>b</sup> | HCl (3)°     | HCl (8) <sup>a</sup> |
| The sugar<br>moiety         | 1                            | 89.2(d) <sup>d</sup> | 89.1  | 88.9(d) <sup>d</sup> | 88.8 | 89.2                 | 88.3         | 88.7                 |
|                             | 2                            | 69.7(d)              | 69.1  | 68.6(d)              | 68.2 | 68.8                 | 70.3         | 68.3                 |
|                             | 3                            | 71.3(d)              | 71.2  | 71.3(d)              | 70.6 | 71.4                 | 71.3         | 70.7                 |
|                             | 4                            | 70.0(d)              | 69.5  | 69.2(d)              | 69.7 | 69.5                 | 69.9         | 69.5                 |
|                             | 5                            | 69.3(d)              | 69.8  | 71.7(d)              | 67.3 | 70.0                 | 69.3         | 68.1                 |
|                             | 6                            | 49.0(d)              | 49.9  | 50.4(d)              | 54.8 | 54.9                 | 50.8         | 56.9                 |
|                             | 7                            | 76.7(d)              | 76.8  | 77.4(d)              | 74.7 | 67.4                 | 76.7         | 65.7                 |
|                             | 8                            | 14.0(q)              | 14.0  | 12.5(q)              | 14.3 | 17.2                 | 14.7         | 17.7                 |
|                             | SCH <sub>3</sub>             | 14.0(q)              | 14.0  | 13.9(q)              | 13.6 | 14.2                 |              | 13.6                 |
|                             | $OCH_3$                      | 56.7(q)              | 56.9  | 56.3(q)              | 57.0 | -                    | 56.9         |                      |
| The amino<br>acid<br>moiety | 1'                           | 177.3(s)             | 169.4 |                      |      | 170.1                | 169.1        |                      |
|                             | 2'                           | 68.9(d)              | 68.5  |                      |      | 69.5                 | 68.5         |                      |
|                             | 3'                           | 30.9(t)              | 30.5  |                      |      | 36.4                 | 30.8         |                      |
|                             | 4'                           | 23.9(t)              | 23.4  |                      |      | 37.4                 | 23.9         |                      |
|                             | 5'                           | 56.7(t)              | 57.3  |                      |      | 62.4                 | 57.7         |                      |
|                             | NCH <sub>3</sub>             | 41.1(q)              | 41.4  |                      |      | 41.8                 | 41.9         |                      |

| Table 1. | CMR | spectra | of | Bu-2545 | and | related | compounds. |
|----------|-----|---------|----|---------|-----|---------|------------|
|----------|-----|---------|----|---------|-----|---------|------------|

 $^{\rm a}$  Recorded by a Varian FT-80 spectrometer at 20 MHz in  $D_2O$  with dioxane as an internal reference.

<sup>b</sup> See ref. 4. The shifts of *n*-propyl on the N-acyl residue are omitted.

° See ref. 4. The shifts of  $\beta$ -salicyloxyethylthio in the 1-position of the sugar moiety are omitted.

<sup>d</sup> Multiplicity of resonance in single frequency off-resonance proton-decoupled spectrum.





acyl and O-CH<sub>3</sub> carbons of 1 showed a good agreement with those of celesticetin  $(3)^{4}$ . This is consistent with the proposed structure in the previous paper<sup>1)</sup>, where the 7-hydroxy group of the methyl thiolincosaminide moiety is methylated and the 6-amino group acylated with

N-methylproline (hygric acid) as in 3.

Hydrolysis of 1 with 6 N hydrochloric acid (reflux, 3 hours) followed by purification on Amberlite IR-120 gave L-hygric acid (4) (45% yield) as colorless needles, mp 114~114.5°C (Ref.<sup>5)</sup> 116°C), m/z 129 (M<sup>+</sup>),  $[\alpha]_{D}^{25}-82.5^{\circ}$  (c 1.0, H<sub>2</sub>O) [Ref.<sup>5)</sup>-80.1° (c 2, H<sub>2</sub>O)], which was identical in all respects with L-hygric acid prepared from Lproline by N-methylation with formaldehyde and sodium cyanoborohydride.

It has been reported<sup>6)</sup> that hydrazinolysis of 2 at reflux temperature cleaved the amide bond and liberated the sugar and amino acid moieties without rearrangement or racemization. Thus, **1** was subjected to a similar hydrazinolysis (reflux for 2 days) and following chromatographic separation on a silica gel column afforded a basic substance (**5**,  $C_{10}H_{21}NO_5S$ ) having no amide band in the IR, along with N-methylproline hydrazide (**6**) which gave **4** by 6 N HCl hydrolysis (overall yield of **4**, 35%).

Compound 5 was compared with methyl thiolincosaminide (8) which was prepared from 2 by a reported procedure<sup>6</sup>. The PMR spectrum

## Fig. 2. Degradation reaction of Bu-2545.



| Proton              | Chemical shift, $\delta$ (ppm from DSS) |                        |  |  |  |  |  |
|---------------------|-----------------------------------------|------------------------|--|--|--|--|--|
| FIOTOI              | 5                                       | 8                      |  |  |  |  |  |
| >CH-CH <sub>3</sub> | 1.15 (d, J = 6.5 Hz)                    | 1.13 (d, J = 6.5 Hz)   |  |  |  |  |  |
| $S-CH_3$            | 2.11 (s)                                | 2.12 (s)               |  |  |  |  |  |
| $O-CH_3$            | 3.32 (s)                                | -                      |  |  |  |  |  |
| Anomeric H          | 5.28 (d, $J = 5.5$ Hz)                  | 5.33 (d, $J = 5.5$ Hz) |  |  |  |  |  |

Table 2. Major signals in PMR spectra of 5 and 8 (60 MHz,  $D_2O$ ).

(60 MHz, D<sub>2</sub>O) of 5 (Table 2) showed signals assignable to >CH-CH3 and S-CH3 groups as well as an anomeric proton, which were also observed in the spectrum of  $8^{7}$ , and, in addition, indicated the presence of an O–CH<sub>3</sub> singlet at  $\delta$ 3.32. The CMR spectrum of 5 (Table 1) which included 10 carbon signals was similar to that of 8 in the C-1  $\sim$  C-5 signals. The C-7 signal of 5 located at 9.0 ppm lower field than that of 8 and the C-6 and C-8 signals of 5 shifted to the higher field by 2.1 ppm and 3.4 ppm, respectively, than those of 8. These observations and an O-CH<sub>3</sub> signal at  $\delta$  57.0 in 8 indicated a methoxy group present at the C-7 position of 8. The mass spectrum of 5 (Fig. 3) indicated the M<sup>+</sup> ion at m/z267 and an intense peak at m/z 88 due to cleavage between C-5 and C-6. These peaks of 5 were higher by 14 mass units than the corresponding peaks of  $8^{3}$ , whereas the base peak at m/z 208 due to cleavage between C-6 and C-7 was common to both 5 and 8. This also supported the location of a methoxy group at the 7-position of 8.

The above spectral data suggested that 5 was methyl 7-O-methyl thiolincosaminide or its 7-epimer. Methyl 7-O-methyl-1-thio- $\alpha$ -lincosami-

Fig. 3. Diagnostic peaks in mass spectrum of 5 and 8.



nide has been reported<sup>9</sup> to be prepared from the tetra-N,O-acetate (7) derived from lincomycin and celesticetin *via* **8** and 2-hydroxyethyl 1-thio- $\alpha$ -celestosaminide (**9**)<sup>10</sup>, respectively. The identities of **5** and its tetra-N,O-acetate (7) with those reported in literature were verified by melting point and specific rotation data: **5**: mp 127 ~ 128°C (Ref.<sup>9)</sup>, 126~126.5°C); [ $\alpha$ ]<sub>D</sub><sup>23</sup>+250° (*c* 0.3, H<sub>2</sub>O)[Ref.<sup>9)</sup>, [ $\alpha$ ]<sub>D</sub>+263° (*c* 0.83, H<sub>2</sub>O)]. **7**: Ac<sub>2</sub>O/Pyridine; yield 82%; mp 211~213°C (Ref.<sup>9)</sup>, 211.5~213°C); [ $\alpha$ ]<sub>D</sub><sup>25</sup>+234° (*c* 0.5, CHCl<sub>3</sub>) [Ref.<sup>9)</sup>, [ $\alpha$ ]<sub>D</sub>+229° (*c* 0.72, CHCl<sub>3</sub>)]; M<sup>+</sup> *m*/*z* 435;  $\nu_{e=0}$  1755, 1660 cm<sup>-1</sup>.

Thus, the sugar part of Bu-2545 was found to have the same stereochemistry as that of lincomycin and celesticetin. Accordingly, the structure of Bu-2545 was established as 7-O-methyl-4'-de-*n*-propyllincomycin or methyl 6-N-(1methyl-L-prolyl)-1-thio- $\alpha$ -celestosaminide.

## References

- HANADA, M.; M. TSUNAKAWA, K. TOMITA, H. TSUKIURA & H. KAWAGUCHI: Antibiotic Bu-2545, a new member of the celesticetin-lincomycin class. J. Antibiotics 33: 751~753, 1980
- HERR, R. R. & G. SLOMP: Lincomycin. II. Characterization and gross structure. J. Am. Chem. Soc. 89: 2444~2447, 1967
- HOEKSEMA, H.; G. F. CRUM & W. H. DEVERIES: Isolation and purification of celesticetin. Antibiot. Ann. 1954/1955: 837~841, 1955
- 4) MIZSAK, S.; G. SLOMP, A. NESZMELYI, S. D. GERO & G. LUKACS: Carbon-13 NMR spectral analysis and spin-lattice relaxation times of the antibiotic lincomycin and related compounds. Tetrahed. Lett. 1977: 721 ~ 724, 1977
- KARRER, P. & R. WIDMER: Configuration of nicotine. Optically active hygric acid. Helv. Chem. Acta 8: 364~368, 1925
- SCHROEDER, W.; B. BANNISTER & H. HOEKSEMA: Lincomycin. III. The structure and stereochemistry of the carbohydrate moiety. J. Am. Chem. Soc. 89: 2448 ~ 2453, 1967
- SLOMP, G. & F. A. MACKELLAR: Lincomycin. IV. Nuclear magnetic resonance studies on the structure of lincomycin, its degradation products, and some analogs. J. Am. Chem. Soc. 89: 2454~2459, 1967
- KAGAN, F. & M. F. GROSTIC: Mass spectra of lincomycin, lincomycin analogs and degradation products. Org. Mass Spectrometry 6: 1217~1223, 1972
- 9) BANNISTER, B.: Modifications of lincomycin

involving the carbohydrate portion. III. The 7-O-methyl and 6-de-(1-hydroxyethyl) analogues. J. Chem. Soc. Perkin I 1973: 1676~1682, 1973  HOCKSEMA, H.: Celesticetin. IV. The structure of celesticetin. J. Am. Chem. Soc. 86: 4224~4225, 1964